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Abstract. There has been significant progress in the ab initio approaches to the structure of light nuclei.
One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-
nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we
present a brief overview of the NCSM with examples of recent applications. We highlight our study of
the parity inversion in 11Be, for which calculations were performed in basis spaces up to 9~Ω (dimensions
reaching 7×108). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM′

three-nucleon interaction with several proposed parameter sets.

PACS. 21.60.-n Nuclear structure models and methods – 21.30.Fe Forces in hadronic systems and effective
interactions

1 Introduction

In recent years, construction of accurate nucleon-nucleon
potentials and increases in computing power have led
to new methods capable of solving the nuclear-structure
problem for systems of more than four nucleons [1,2].
One such method is the ab initio no-core shell model
(NCSM) [2]. The principal foundation of this approach is
the use of effective interactions appropriate for the large,
but finite, basis spaces employed in the calculations. These
effective interactions are derived from the underlying real-
istic inter-nucleon potentials by a unitary transformation
in a way that guarantees convergence to the exact solution
as the basis size increases.

In this contribution, we briefly discuss the NCSM the-
ory, present a convergence test of the method as well as
selected nuclear-structure results for light nuclei up to
A = 13. We highlight our recent study of the parity inver-
sion in 11Be, for which calculations were performed using
several modern nucleon-nucleon potentials in basis spaces
up to 9~Ω (dimensions reaching 7× 108).

At present, the ab initio NCSM is capable of includ-
ing the much-less-explored genuine three-nucleon forces [3,
4]. An important result of these nuclear-structure stud-
ies is the significance of the three-nucleon interaction in
determining not only the binding energy, but also the
excitation spectra and other observables. Consequently,
nuclear-structure calculations are becoming a tool in dis-
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criminating different three-body interaction models and
at the same time can put constraints on the three-body
force parameters. As a step in this direction, we have im-
proved the accuracy of our three-body interaction calcu-
lations and obtained results for the p-shell nuclei using
the Tucson- Melbourne TM′ three-nucleon interaction [5]
with several proposed parameter sets [6].

2 Ab initio no-core shell model

We consider a system of A point-like non-relativistic nu-
cleons that interact by realistic two- or two- plus three-
nucleon interactions. As the simpler case, when just the
two-nucleon interaction is considered, was discussed in
several papers, see, e.g., ref. [2], we focus here on the
more general case when both two- and three-nucleon in-
teractions (TNI) are included. The starting Hamiltonian
is then

HA =
1

A

∑

i<j

(pi − pj)
2

2m

+
A
∑

i<j

VNN,ij +
A
∑

i<j<k

VNNN,ijk , (1)

wherem is the nucleon mass, VNN,ij is the nucleon-nucleon
(NN) interaction, and VNNN,ijk is the three-nucleon in-
teraction. In the NCSM, we employ a large but finite
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harmonic-oscillator (HO) basis. Due to properties of the
realistic nuclear interaction in eq. (1), we must derive an
effective interaction appropriate for the basis truncation.
To facilitate the derivation of the effective interaction, we
modify the Hamiltonian (1) by adding to it the center-of-
mass (CM) HO Hamiltonian HCM = TCM + UCM, where

UCM = 1

2
AmΩ2R2, R = 1

A

∑A

i=1 ri. The effect of the HO
CM Hamiltonian will later be subtracted out in the final
many-body calculation. Due to the translational invari-
ance of the Hamiltonian (1) the HO CM Hamiltonian has
in fact no effect on the intrinsic properties of the system
in the infinite basis space. The modified Hamiltonian can
be cast into the form

HΩA = HA +HCM =

A
∑

i=1

hi +

A
∑

i<j

V Ω,Aij +

A
∑

i<j<k

VNNN,ijk

=

A
∑

i=1

[

p2i

2m
+

1

2
mΩ2r2i

]

+

A
∑

i<j

[

VNN,ij −
mΩ2

2A
(ri − rj)

2

]

+

A
∑

i<j<k

VNNN,ijk . (2)

Next we divide the A-nucleon infinite HO basis space into
the finite active space (P ) comprising of all states of up
to Nmax HO excitations above the unperturbed ground
state and the excluded space (Q = 1 − P ). The basic
idea of the NCSM approach is to apply a unitary trans-
formation on the Hamiltonian (2), e−SHΩA e

S such that
Qe−SHΩA e

SP = 0. If such a transformation is found, the
effective Hamiltonian that exactly reproduces a subset
of eigenstates of the full space Hamiltonian is given by
Heff = Pe−SHΩA e

SP . This effective Hamiltonian contains
up to A-body terms and to construct it is essentially as
difficult as to solve the full problem. Therefore, we ap-
ply this basic idea on a sub-cluster level. When a genuine
TNI is considered, the simplest approximation is to use a
three-body effective interaction. The NCSM calculation is
then performed with the following four steps:

i) We solve a three-nucleon system for all possible
three-nucleon channels with the Hamiltonian HΩA , i.e., us-

ing h1 + h2 + h3 + V
Ω,A
12 + V Ω,A13 + V Ω,A23 + VNNN,123. It

is necessary to separate the three-body effective interac-
tion contributions from the TNI and from the two-nucleon
interaction. Therefore, we need to find three-nucleon solu-
tions for the Hamiltonian with and without the VNNN,123
TNI term. The three-nucleon solutions are obtained by
procedures described in refs. [7] (without TNI) and [8]
(with TNI). We note that we made some improvements
and simplifications to the precedure described in ref. [8],
which allowed us to reach a larger basis size and, conse-
quently, lead to an improved accuracy of our results.

ii) We construct the unitary transformation cor-
responding to the choice of the active basis space P
from the three-nucleon solutions using the Lee-Suzuki
procedure [9,10].
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Fig. 1. Ground state and the first 0+0 excited state energy of
4He calculated using the CD-Bonn 2000 NN potential. Depen-
dence on the NCSM model-space size Nmax for three different
HO frequencies, ~Ω = 19, 28 and 40 MeV, is presented.

iii) As the three-body effective interactions are de-
rived in the Jacobi-coordinate HO basis but the A-
nucleon calculations will be performed in a Cartesian-
coordinate single-particle Slater-determinant m-scheme
basis, we need to perform a suitable transformation of
the interactions. This transformation is a generalization
of the well-known transformation on the two-body level
that depends on HO Brody-Moshinsky brackets.

iv) We solve the Schrödinger equation for the A nu-

cleon system using the Hamiltonian HΩA,eff =
∑A
i=1 hi +

1

A−2

∑A
i<j<k V

NN
3eff,ijk +

∑A
i<j<k V

NNN
3eff,ijk, where the 1

A−2

factor takes care of overcounting the contribution from
the two-nucleon interaction. At this point we also subtract
the HCM. The A nucleon calculation is then performed us-
ing a shell model code generalized to handle three-body
interactions.

3 Convergence test: 4He with the CD-Bonn

2000

By construction, the ab initio NCSM calculation will con-
verge to the exact result of the starting Hamiltonian with
the increase of the model space, P → 1, that is with
Nmax → ∞. Obviously, the idea is that the use of the
effective interaction will speed up the convergence signif-
icantly compared to a calculation with the starting bare
Hamiltonian. Consequently, the hope is that converged re-
sults can be obtained with model spaces that are reachable
with present computers.

An example of a succcesfully converged NCSM calcu-
lation is shown in fig. 1. We present the dependence of
the 4He ground state and the first 0+0 excited state en-
ergy on the model space size, defined by Nmax, for three
different HO frequencies. The CD-Bonn 2000 NN poten-
tial was used [11]. The calculations were performed with
the no-core version of the shell-model code Antoine [12].
We observe a fast convergence for the ground state for all
three frequencies, with the final result −26.15(10) MeV
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in good agreement with a Faddeev-Yakubovsky calcula-
tion [13]. The excited state convergence is slower with a
stronger frequency dependence due to the more complex
structure of this state. Still, we are able to extrapolate
the excitation energy to −7.1(4) MeV. Although the CD-
Bonn 2000 NN potential underbinds 4He by about 2 MeV,
the 0+2 0 excitation energy is described rather well. It is in-
teresting to note that the convergence rate for the ground
state is the fastest for the highest HO frequency while the
convergence rate for the excited state is the fastest for
the lowest HO frequency employed in our presented cal-
culations. Clearly, the optimal frequency for convergence
is state dependent and correlated with the radius of the
state, the smaller the radius the higher optimal frequency.

4 Natural- vs. unnatural-parity states in 11Be

Studies on light neutron-rich nuclei has attracted an in-
creasing amount of theoretical and experimental effort
ever since the advent of radioactive nuclear beams. One
reason for this is the fact that substantial deviations from
regular shell structure has been observed in these few-
body systems. The A = 11 isobar is of particular interest
in this respect since it exhibits some anomalous features
that are not easily explained in a simple shell-model frame-
work. Most importantly, the parity-inverted 1/2+ ground
state of 11Be was noticed by Talmi and Unna [14] already
in the early 1960s, and it still remains one of the best
examples of the disappearance of the N = 8 magic num-
ber. The ability to explain this level inversion within a
microscopic theory, such as the ab initio NCSM, is a true
challenge of our understanding of nuclear forces. Unfortu-
nately, a shortcoming of the NCSMmethod is the fact that
the HO basis functions have incorrect asymptotics. This
might be a problem when trying to describe loosely-bound
systems. Therefore, it is desirable to include as many
terms as possible in the expansion of the total wave func-
tion. By restricting ourselves to the use of NN interactions,
we are able to maximize the model space and to better ob-
serve the convergence of our results. In order to study the
level ordering in 11Be, and in particular the relative posi-
tion of natural- and unnatural-parity states, we have per-
formed large-basis ab initio NCSM calculations using four
different high-precision NN interactions [15]. One of these,
the non-local INOY interaction [16], has never before been
used in nuclear-structure calculations. Although it is for-
mally a two-body potential, it does reproduce the binding
energies of 3H and 3He and, to some extent, 3N scattering
data. Remember that the underbinding of A > 2 systems
is a deficiency of all other realistic NN interactions. How-
ever, this achievement comes with the cost of having to
sacrifice some of the accuracy of the fit to NN scattering
data. In particular, the 3P interactions are slightly modi-
fied in the IS-M version of the potential that we are using.

In fig. 2 we show the excitation spectrum for 11Be cal-
culated using the INOY interaction. We were able to reach
the 9~Ω model space, which corresponds to a matrix with
dimension exceeding 7 × 108. Although we do not repro-
duce the anomalous 1/2+ ground state with any of the NN
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Fig. 2. Excitation spectrum for 11Be calculated using the
INOY interaction in 0~Ω–9~Ω model spaces with a fixed HO
frequency of ~Ω = 17 MeV. The experimental values are from
ref. [17].

interactions being used, we do observe a dramatic drop
of the positive-parity excitation energies with increasing
model space. This observation is particularly prominent
for the INOY results, shown in fig. 2; which in turn sug-
gests that a realistic 3N force will be needed in order to
reproduce the parity inversion in microscopic approaches.

In this study we observe a remarkable agreement be-
tween the predictions of different standard high-precision
NN interactions. In particular, the relative level spac-
ings observed when plotting positive- and negative-parity
states separately, were found to be very stable. The INOY
interaction gives a larger binding energy and a stronger
spin-orbit splitting than the other NN interactions. Note
that both these effects would be expected from a genuine
TNI, but with INOY they are achieved by the use of short-
range, non-local terms in the NN interaction.

5 Results with a genuine three-nucleon

interaction

It is well established that standard accurate NN poten-
tials, like AV8′ [1] or CD-Bonn 2000 [11], must be aug-
mented by realistic three-body interactions in order to
reproduce experimental binding energies, scattering ob-
servables and nuclear structure of A > 2 nuclei.

An interesting example which demonstrates the im-
portance of the TNI is the ground-state spin inversion
in 10B. The ground state of 10B is 3+0. Calculations
with standard accurate NN potentials, however, predict
a 1+0 ground state [1,18,19]. By including the Tucson-
Melbourne TM′ TNI, the problem is resolved, see fig. 3.
In the figure, three parameter sets denoted as 81, 93 and
99 [6] are considered for the TM′ TNI. All give similar
results, but dramatically different compared to the calcu-
lation with only the two-nucleon potential.

In 13C, a less dramatic but still significant effect of
the TNI is apparent in the excitation spectra shown in
fig. 4. A calculation with the two-nucleon interaction un-

derestimates the level splittings of 3
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1
and 5
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Including the TM′ TNI significantly improves agreement
of these level splittings with experiment. We can also see
a higher sensitivity of the excitation energies to the choice
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93 and 99 are considered for the TM′ TNI. The 4~Ω basis space
and the ~Ω = 15 MeV HO frequency were employed.

of the TNI parameter set compared to 10B. Contrary to
the two-nucleon interaction, the form and parameters of
the TNI are much less established. A sensitivity of nuclear
structure to the form and parameters of the TNI can then
be helpful in determining the fine details of the TNI itself.
Obviously, before any conclusions can be drawn, the con-
vergence of the nuclear-structure results must be verified.
Concerning the NCSM calculations with a two-nucleon in-
teraction, we were able to reach the 10~Ω and 8~Ω model
spaces for 10B and 13C, respectively. This was sufficient
for the convergence of excitation energies of low-lying lev-
els. Unfortunately, the NCSM calculations with the TNI
are much more involved. Currently, we are limited to 4~Ω
model spaces for the A = 9–16 nuclei. It is imperative to
increase the basis to at least 6~Ω in order to establish the
convergence of the excitation energies.

The effects of the TNI in p-shell nuclei are not only lim-
ited to an increase of binding energies and changes in exci-
tation spectra. In the A = 10–13 region, we also observe a
significant TNI influence on the Gamow-Teller and B(M1)
transitions. An intresting example is the 0+0→ 1+1 tran-
sition in A = 12 [3] known to be highly sensitive to the
strength of the spin-orbit force. An improved description
of this transition with the TNI demonstrates that the TNI,
here in particular the TM′(99), increases the spin-orbit
force strength. Similarly, we observe significant TNI ef-
fects for Gamow-Teller transistions in 11B → 11C [4] and
in transitions from the 13C ground state to low-lying ex-
cited states in 13N. Concerning the 11B→ 11C transitions,
recent experimental data agree much better with our cal-
culated results when the TNI is included [20].
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